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The Stochastic Emissions Inventory Generator: Methodology and Assumptions 
 
1. Overview 
 
This Appendix details the methods and assumptions for constructing the stochastic emissions 
inventory generator.  This tool has been developed as a part of project H13 under the Houston 
Advanced Research Consortium (HARC).  Project H13 develops tools and methods to support 
the mid-course correction of the ozone state implementation plan (SIP) for the Houston-
Galveston, Texas region.  One of the primary goals of project H13 is to improve the models’ 
ability to represent the large amount of temporal variability observed in VOC emissions, to test 
the effect of variability in emissions on ozone exceedences, and to test potential regulatory 
designs for reducing the frequency and/or magnitude of ozone exceedences.  This document 
describes the tool developed to simulate the variability in VOC emissions from industrial point 
sources. 

 
The layout of this Appendix is as follows.  In Section 2, we describe the different types and 
relative contributions of industrial point sources of VOC emissions.  In section 3, we describe the 
point sources for which we currently have observations available, and show the variability that 
occurs in individual sources.  Section 4 outlines the approach used to model and simulate the 
stochastically varying emissions from each sample source.  Section 5 describes the method for 
simulating emissions from the entire Houston-Galveston point source emissions inventory. The 
estimated parameters and probability distributions for each observation set are given in detail in 
the attachments. 
 
 
2. Industrial VOC Point Sources 
 
Figure 1 shows a rough breakdown of industrial sources of VOC emissions in Houston by source 
type.  Half of the emissions are considered “fugitives”, a blanket term for multiple, small leaks 
within an industrial facility.  About a third come from flares, emission points that can be fed 
from a variety of processes in the facility.  Under ideal conditions, the flare combusts up to 99% 
of the outgoing VOCs.  Nevertheless, these flares exhibit extremely wide variability, as shown in 
the next section.  The other two large categories are cooling towers and vents, each contributing 
about 8% of the annual total VOC emissions.    
 
Not all flares have emissions of the same magnitude.  In fact the largest 8 flares account for 
nearly a third of annual emissions (Figure 2).  The top 19 account for 50% of annual emissions. 
And of course the speciation, the percentage of emissions that are the highly reactive VOCs, 
varies among sources, and for each source, varies over time. 
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Figure 1: Relative Contribution of VOC Emissions by Point-Source Type in Houston 

 
 

 
 

Figure 2: Cumulative Distribution of VOC Emissions from Flares in Houston 
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3. Observed Variability in Individual Point Sources 
 

Figure 3 shows the hourly measurements of VOC emissions over the course of a year 
from a typical flare at an industrial facility. Although the annual mean emissions are in fact 
lower than the permitted level, this allows occasional high spikes of emissions.  All but two of 
these spikes were above the daily permitted level.  We have obtained similar sample sets for 16 
sources from different facilities, mostly flares and a few cooling towers (Table 1).  All exhibit 
significant variability, although the details of the pattern also vary from one flare to another.  
Figure 5 shows the emissions from four different sources; note that each one has a different 
pattern of variability.  The temporal pattern of emissions from each source is given in the 
attachments (along with simulations of each source). 

 
 
 
 

Figure 3: VOC mass flow from a typical flare 
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Table 1: Sample Sets for Emission Sources 

 
Name Type # of Observations 

Flare 1 Flare 8208 
Flare 2 Flare 720 
Flare 5 Flare 3624 
HC Flare Flare 1800 
Olefins Flare Flare 1800 
FCCU Flare 17533 
SRU Flare Flare 17543 
Merox Flare Flare 17543 
Low Pressure Flare Flare 17543 
General Service #1 Flare 17543 
General Service #2 Flare 17543 
Cooling Tower 1 Cooling Tower 314 
Cooling Tower 2 Cooling Tower 340 
Olefins OP3 Total Flare 10799 
ALKY Flare Flare 10799 
ESO Flare Flare 10799 

 
 
 

Figure 4: Emissions from two Flares and two Cooling Towers 
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4. Simulating Individual Point Sources 
 
The simplest approach is to fit the emissions to a probability distribution, and generate random 
samples from that distribution.   For example, the emissions of Flare 1 (Figure 3) can be well 
approximated by a lognormal distribution (Figure 5a).  But random generation from that 
lognormal produces an emissions pattern (Figure 5b) with no resemblance to the actual behavior 
of Flare 1. 
 
To develop a reasonable model of emissions, need to explicitly represent more detail about the 
emissions behavior.  Upon closer examination of Flare 1 emissions (Figure 6), we can see that 
there are several different distinct “modes” of variability. There is one component, which we will 
refer to as “nearly constant”, where both the mean and the variance are lowest.  This may in fact 
correspond to some “base” operation level for the plant processes.  The second component we 
label as “routinely variable”.  This mode will have higher mean and higher variability in 
emissions than the “nearly constant” mode, and include moderate emission spikes that are still 
within the legal permitted level.  The third mode we call “allowable episodic”, which consists of 
shorter periods of much higher emissions spikes, and larger variability.  These are also within 
permitted levels, but can release significantly large amounts of VOCs within an hour.  This mode 
usually corresponds to minor mechanical failures within the process, which can sometime take 
hours or days before it is corrected.  Finally, the highest mode, “emission events” or “upsets”, 
will be treated separately.  These emissions do exceed permitted levels, and there are currently 
rules in place to address them.  We focus on the other three modes in order to test whether the 
legally permitted variability in emissions is contributing to ozone exceedences. 
 
To model these different components, we apply statistical mixture theory.  In other words, we 
identify each hourly emission as belonging to one of the components, fit probability distributions 
to each component separately, and model the probability of switching from one component to 
another.  

 
 
 
 

Figure 5: Simulation from Simple Univariate Distribution 
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Figure 6: Different “Modes” or “Components” of Emissions Variability 
 

 
 
The first step to building a model of this behavior is to assign each hour’s emissions as belonging 
to one of the components.  Once we can subdivide the observations, we can then estimate the 
parameters for each component distribution from its observations.  The current version uses a 
simple graphical statistical technique, as illustrated in Figure 7.  The observations from the 
source (e.g., Flare 1) are sorted in order of size, rather than by time.  Each size-ordered emission 
value is then assigned its number in the order (e.g., 1 to 8208).  The inverse normal is then 
calculated this rank number divided by the total number (n/8208).  We then graph the emissions 
against the inverse normal of the rank of the emissions, as shown in Figure 7a.  If any segment of 
this curve is a straight line, it is reasonable to assume that that range of emissions are normally 
distributed.  Furthermore, the mean and standard deviation can be estimated by the range 
midpoint and the slope, respectively.  We also repeat this procedure with the natural log of the 
emissions, and graph again versus the inverse normal (Figure 7b).  A straight line segment on 
this graph indicates a lognormal distribution. Looking at the graphs for Flare 1 in the figure, it 
appears that the first component (“nearly constant”) is normally distributed, and the second and 
third components (“routinely variable” and “allowable episodic”) are lognormally distributed.  A 
least-squares regression line is fit to each line segment to estimate the slope, and thereby the 
standard deviation.  The fitted regression equation is given in the table in the attachments for 
each component for every source. 
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Figure 7: Locating the Component Boundaries 

Emissions
0 5 10 15 20

In
ve

rs
e 

N
or

m
al

-4

-2

0

2

4

Natural Log (Emissions)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

In
ve

rs
e 

N
or

m
al

-4

-2

0

2

4

 
 
Once the boundaries between components have been identified, we can fit probability 
distributions to each component, either normal or lognormal.  Figure 8a shows probability 
distributions fit to each of the three components of Flare 1 emissions.  Since the process is in 
each component some fraction of the time, we can show the resulting total emissions uncertainty 
by scaling each pdf by its proportion of total emissions (Figure 8b). 
 
Finally, we model the temporal behavior by combining three elements: using state transition 
probabilities, probabilistic time within one mode, and imposing autocorrelation during emissions 
sampling.  In any of the observed emission examples, one can see that the process often tends to 
remain in one mode for some period of time, the length of which also varies.  Having identified 
which component each emission value “belongs to”, we can resort by time and obtain the 
number of hours the process remains in one state before switching to another.  Using this data, 
we fit exponential probability distributions to the number of hours a process will remain in each 
mode.  Figure 9 shows these distributions for the time within each component for Flare 1.  The 
transition probabilities are not derived for a full Markov model for this version.  We simply use 
the relative proportion of hours in each component as the probabilities of moving to that state at 
the next transition time.  Finally, the emissions are highly autocorrelated, both within and across 
components.  Since they result from a continuous industrial process, this should not be 
surprising.  Based on the samples obtained, we impose an autocorrelation of 0.99 (with the 
previous hour’s emissions) on each emissions sample generated. 
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Figure 8: Component Distributions for Flare 1 
 

 
 
 

Figure 9: Time within each Component before next Transition 

Hours Within Mixture Component before next Transition

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y 

D
en

si
ty

0.0

0.2

0.4

0.6

0.8

1.0

Nearly Constant Component
Routinely Variable Component
Allowable Episodic Component

 
 

To summarize, the representation of any single point source includes the following information: 
• Three probability distributions of emissions, one for each component, 

either Normal or Lognormal, with mean and standard deviation 
• Three exponential distributions of the time in hours spent within each component 
• The proportion of emissions associated with each component. 
The algorithm for generating emission samples is: 

1. Use proportions to randomly select which component is current. 
2. Randomly draw the number of hours to remain in this component 
3. Randomly draw emissions from the distribution for this component, imposing a 

correlation of 0.99 with the previous hour’s emissions 
4. If number of hours to remain here are zero, repeat from Step 1), otherwise repeat from 

step 3). 
This procedure is drawn schematically in Figure 10 as a flow chart. 



 Draft 

 B-10 

Figure 10: Procedure for Simulation Emissions from a Point Source 
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Figure 11: Actual Emissions and Three Simulations for Flare 2 
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Figure 11 shows an example of the results obtained from this simulation method.  One of the 
panels is the actual emissions measured at “Flare 2”.  The other three are simulated from the 
estimated stochastic model.  Can you guess which one is the real Flare 2 (answer given in the 
attachments)? 

 
 

5. Simulating Houston-Galveston Emissions Inventory 
 

The final step in the procedure is to apply these models to the full point source emission 
inventory for Houston-Galveston.  The Stochastic Emission Generator (SEG) is designed to read 
in the standard emission inventory database used by TCEQ.  For all flares and cooling towers, 
we then assign one of the known source models, just described.  Currently, we make this 
assignment randomly.  In future versions, we hope to combine knowledge of process and facility 
types to make deliberative assignments for each point source in the inventory.  The assigned 
mixture model is then scaled so that the mean will be the annual average emissions from the 
inventory, and preserves the relative variance (the ratio of the standard deviation to the mean is 
preserved in the scaling).  This allows SEG to simulate time-varying VOC emissions from all 
point sources in Houston.  These results will then be used as inputs to air quality models to 
explore the effects on ozone production. 
 
In this section we present the variability in aggregate VOC emissions that results from imposing 
variability in each individual source.  Figure 12 shows one possible hourly profile of total VOC 
emissions for 200 days.  This is an “instance” or random sample for the aggregate of all VOC 
emissions over all of Houston.  Many other instances are possible.  One way to describe the 
variability in total VOC emissions is with a probability density function, as shown in Figure 13.   
 

Figure 12:  
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Figure 13:  
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The variability in total VOC emissions for the Houston area is an initial way to get a sense of 
the variation in drivers of ozone formation.  However, because ozone formation at any 
location will depend on the local concentrations of NOx and VOC, the Houston-wide 
aggregate will probably underestimate the local variability.  We can focus instead on a 
specific geographic sub-region of interest.  As an example, we present here the results for a 
region south of the ship channel and including Deer Park (Figure 14).  Ignoring transport for 
simplicity, we can extract the VOC emissions within these latitude-longitude boundaries.  
Figure 15a shows an instance of total VOC emissions for this region.  We can also examine 
specific VOC species of interest, particularly the highly reactive species.  Figure 15b shows 
the ethylene emissions for the region during the same instance. 

 
Figure 14:  
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Figure 15:  
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Finally, we can use these initial results to look at which point sources, in terms of relative 
size, are driving the variability in total emissions.  Figure 16 shows the cumulative VOC 
emissions from flares in order of increasing size of annual average emissions.  The largest 50 
flares, out of 410 flares total in the emissions inventory, are driving the majority of the 
variability.  Again, even more relevant for ozone formation is the variability within a small 
region.  Figure 17 shows the same cumulative emissions graph for the 32 flares within the “deer 
park” subregion.  Of these, the largest 8 flares cause most of the observed variation.  

 
 
 
 

Figure 16:  
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Figure 17:  

FL
10

12
X-

D
-1 L-
2

FL
A

R
E

#1
FL

59
S

M
R

-2
IN

D
O

K
00

1
FL

21
0

TO
-1

H
O

U
S

T-
FL

FL
R

FL
R

FN
W

E
S

T
1-

10
5B

Q
45

01
O

P
3G

R
FL

A
FL

-2
P

-F
L-

2
FL

-1
O

P
3E

LF
LA

FL
16

FL
38

N
O

P
LT

F
FL

40
8

W
P

 F
LA

R
E

30
FL

1
1-

10
5A

30
FL

2
30

FL
5

FL
-1

-2
FL

21
6

FL
-3

08
E

P
-5

Fl
ar

e 
Fl

ow
 (t

on
s 

/ h
r)

0.00

0.05

0.10

0.15

0.20

Mean
Median
67% Bounds
90% Bounds
98% Bounds

 
 
 



 Draft 

 B-15 

Attachments 
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